Extremal Values of VDB Topological Indices over Catacondensed Polyomino Systems

نویسندگان

  • Roberto Cruz
  • Juan Rada
چکیده

A VDB topological index is defined as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Polyomino Chains of VDB Topological Indices

We show that the zig-zag chain Z3 n of segments of length 3 (see Figure 2) has the minimal ABC index among all polyomino chains with n squares. More generally, we give conditions on the numbers {φij} under which the zig-zag chain Z3 n is an extremal value of the induced topological index T defined by T (G) = ∑ 1≤i≤j≤n−1 mijφij where G is a graph with n vertices and mij is the number of edges of...

متن کامل

The Linear Chain as an Extremal Value of VDB Topological Indices of Polyomino Chains

We give conditions on the numbers {φij} under which a vertexdegree-based topological index TI of the form

متن کامل

A note on the zeroth-order general randić index of cacti and polyomino chains

The present note is devoted to establish some extremal results for the zeroth-order general Randi'{c} index of cacti, characterize the extremal polyomino chains with respect to the aforementioned index, and hence to generalize two already reported results.

متن کامل

Second and Third Extremals of Catacondensed Hexagonal Systems with Respect to the PI Index

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index which reflects certain structural features of organic molecules. The PI index of a graph G is the sum of all edges uv of G of the number of edges which are not equidistant from the vertices u and v. In this paper we obtain the second and third extremals of catacondensed hexagonal systems with respect to the PI index.

متن کامل

Topological indices of Kragujevac trees

We find the extremal values of the energy, the Wiener index and several vertex-degree-based topological indices over the set of Kragujevac trees with the central vertex of fixed degree. 2010 Mathematics Subject Classification : 05C90, 05C35.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016